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G protein-coupled receptor 40 (GPR40), a receptor for diverse non-esterified fatty acids, is expressed
predominantly in the wide variety of neurons of the central nervous system and b-cells in the pancreatic
islets. Since deorphanization of GPR40 in 2003, the past decade has seen major advances in our under-
standing of its role in the insulin secretion. However, there is still a great deal to be elucidated about
the role of GPR40 in the brain, because the latter shows the most abundant GPR40 mRNA expression
among the human tissues. Since a substantial expression of GPR40 is also seen in the hypothalamus,
‘brain-lipid sensing’ might be involved in the control of insulin secretion and energy balance. The preced-
ing experiments using monkeys after transient global brain ischemia, have highlighted implication of
GPR40 for amplifying adult hippocampal neurogenesis. Although GPR40-mediated intracellular signaling
was recently found to result in phosphorylation of cAMP response element-binding protein (CREB) nec-
essary for the neuronal differentiation and synaptic plasticity, the signaling cascade is still incompletely
understood. Furthermore, in response to conjugated linoleic acids or trans isomers of arachidonic acid,
GPR40 was recently demonstrated in rodents to mediate lipotoxicity to b-cells, neurons, or microvessels,
which result in diabetes, retinopathy, stroke, etc. However, it still remains undetermined in humans
whether and how oxidized, conjugated, or excessive fatty acids evoke lipotoxicity. Although literature
about GPR40 is limited especially about the brain or the brain–pancreas interaction, this review aims
at summarizing beneficial as well as detrimental effects of this receptor in the brain and pancreas in
response to diverse fatty acids.
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1. Introduction

All mammalian cells require energy and nutrient supplies for
their survival and proper functioning. Aside from glucose, lipids
are the major source of energy necessary for the body, and during
long-term energy deprivation they are used almost exclusively.
Non-esterified fatty acids (NEFA) are the major component of tria-
cylglycerols in the fat, which consist of three fatty acids linked to a
glycerol backbone. Hydrolysis of stored triacylglycerols in the adi-
pose tissue by hormone-sensitive lipase liberates NEFA into the
blood. NEFA, by binding to albumin, circulate in the plasma to be
incorporated into the cell membrane lipid bilayer. The brain shows
the highest organ lipid content after the adipose tissue. Because
the brain has a lipid content of about 50% of dry weight
[20,67,68], longer-chain NEFA are necessary for the neuronal
development and function. For example, polyunsaturated fatty
acids (PUFA) such as x-3 docosahexaenoic acid (DHA) and x-6 ara-
chidonic acid (AA) are major constituents of neural cell membrane
phospholipids [57,36,93].

Since half of the brain content is lipid, fatty acids are among the
most crucial molecules that determine the brain’s integrity and abil-
ity to perform. Essential fatty acids must be obtained from dietary
sources for the maintenance of optimal brain health, because they
cannot be synthesized by the body. As brain composition and func-
tion are sensitive to dietary influences, PUFA deficiency is known to
be associated with many psychiatric diseases such as schizophrenia,
depression, or Alzheimer’s disease [71,89,33]. Furthermore, in the
pancreatic b-cells, circulating NEFA are essential for facilitating
the glucose-stimulated insulin secretion. The extensive innervation
of the Langerhans islets by both parasympathetic and sympathetic
nerves indicates an intimate relation between the hypothalamus
and the pancreas. Parasympathetic stimulation associated with
release of acetylcholine from parasympathetic nerve terminals, acti-
vates the M2 muscarinic receptor on the b-cell surface, that stimu-
lates insulin release in a diacylglycerol (DAG)- and protein kinase
C (PKC)-dependent manner. The sympathetic nerve is also impor-
tant, because the sympathetic innervation serves both b-adrenergic
agonists and a2-adrenergic agonists; increased b-adrenergic activ-
ity enhances insulin release, whereas increased a2-adrenergic
activity decreases it. Both pathways act through adenylyl cyclase,
resulting in a decrease or increase in cAMP levels, respectively
[2,35]. The common characteristic of the hypothalamic neurons
and the pancreatic b-cells is that both can respond to longer-chain
NEFA, and are related to the regulation of energy balance.

Until recently, it was considered that NEFA must enter the b-cell
in order to elicit the majority of their effects. Nowadays, it is clear
that NEFA play crucial roles as extracellular signaling molecules,
although both the pharmacological mechanism and biological sig-
nificance still remain mostly unknown. NEFA and their derivatives
modulate cell surface or intracellular signaling pathways to acti-
vate transcription factors [54]. When non-adipose cells are
exposed to chronic elevation of NEFA (50–100 lM for DHA, eicosa-
pentaenoic acid (EPA), AA or palmitic acid), however, cell dysfunc-
tion, degeneration, and even cell death occur. For example, NEFA
are critical for the normal insulin release, but chronic NEFA expo-
sure to b-cell islets in vitro and in vivo is associated with marked
impairments in glucose-stimulated insulin secretion and insulin
biosynthesis [70,97]. Prolonged NEFA elevation by a lipid infusion
in vivo facilitates insulin resistance and prevents the expected
compensatory b-cell response in humans [15]. Prolonged elevation
of circulating fatty acids ultimately leads to loss of b-cell viability.
Such lipotoxicity may contribute to various pathological conditions
including type 2 diabetes and brain disorders [83,85,82,84,1,4].
However, the molecular mechanisms of lipotoxicity especially in
b-cells and neurons are not sufficiently understood until now. It
is conceivable that generation of reactive oxygen species, abnormal
Ca2+ mobilization, as well as lysosomal membrane permeabiliza-
tion may be key mediators of pathological conditions associated
with lipotoxicity. Almaguel et al. [5] demonstrated in nerve growth
factor (NGF)-differentiated PC12 (rat adrenal pheochromocytoma)
cells that palmitic acid-induced lipotoxicity occurs by lysosomal
membrane permeabilization, and cell death is attenuated by lyso-
somal enzyme, cathepsin inhibitors. Furthermore, they also
showed that DHA rescued PC12 cells from palmitic acid-induced
lipotoxicity by decreasing lysosomal membrane permeabilization.
These data are interesting because during the past decade lyso-
somes have emerged as a second hub for orchestrating cellular sur-
vival and death decisions [92,94,95]. Of particular interest is that
lysosomal destabilization was evident not only in NEFA-induced
PC12 cell apoptosis [4,5] but also in NEFA-induced hepatic cell
apoptosis [23,91]. Although the mechanisms by which NEFA con-
tribute to cell protection and induce cell death are not fully eluci-
dated yet, it would be tempting and reasonable to consider
implications of a NEFA receptor for determining cell fate.

Although it is widely accepted that neurons do not utilize NEFA
but merely glucose as an energy source, the role of NEFA in the
brain, other than as a constituent of cell membranes, had remained
unknown for decades. However, recently the concept has emerged
that the brain is a NEFA-sensing organ [72], because abundant
expression of G protein-coupled receptor 40 (GPR40, also called
FFAR1) for NEFA was found in 2003 in the human brain (Fig. 1A),
including the hypothalamus [14]. GPR40 belongs to the G pro-
tein-coupled receptor family, and was discovered in 1997 by Saw-
zdargo et al. [73]. It is a seven-transmembrane domain receptor
binding with a broad range of medium- to long-chain NEFA.
GPR40 shows higher affinity for longer-chain fatty acids with a
half-maximal effective concentration (EC50) in the 1–2 lmol/L
range [31,26]. Deorphanization and characterization of GPR40 in
2003 [14,31,41] unraveled a novel mechanism of NEFA action as
extracellular signaling molecules. At the surface of b-cells in the
pancreas, for example, GPR40 senses NEFA in the blood and facili-
tates glucose-stimulated insulin secretion. Furthermore, GPR40
was found to be closely related to adult neurogenesis in the pri-
mate hippocampus [93,95]. However, the pharmacological effects
of NEFA binding with GPR40 are complex, because NEFA are not
infrequently elevated excessively and/or oxidized in the subjects
suffering from metabolic syndrome, type 2 diabetes, Alzheimer’s
disease, or Parkinson’s disease, etc. As our understanding of the
pharmacology of GPR40 is still incomplete, not only its physiolog-
ical role but also its pathological role remains obscure. Accordingly,
here I review the current state of knowledge and emerging con-
cepts regarding dual roles for GPR40 which is expressed predomi-
nantly in the brain and pancreas (Fig. 1A).

2. Predominant expression in the brain and pancreas; Why?

Nutrient-sensitive neurons in the brain sense and integrate
information from a range of nutrient signals that are generated after



Fig. 1. GPR40 mRNA expression in the human tissues (A), and brain regulation of glucose and lipid homeostasis (B). (A) The mRNA measurements by RT-PCR show that GPR40
is predominantly, but not exclusively, expressed in the brain and pancreas (cited from [14]). (B) The brain responds to changes in the levels of free (non-esterified) fatty acids
(FFA or NEFA) and leptin signals that were released from the adipose tissue (brain-lipid sensing). Leptin is a hormone that is thought to serve as a signal of adiposity to the
hypothalamus. The brain responds also to an increase in the levels of circulating glucose, during which hepatic glucose production and storage, pancreatic insulin secretion as
well as skeletal muscle glucose uptake are regulated (cited from [72]). As GPR40 is expressed in both K and L cells of the gut, it may play a role in sensing ingested fat within
the intestinal lumen and thereby contribute to the incretin-effect by promoting the release of glucagon-like-peptide-1 and glucose-dependent insulinotropic polypeptide into
the circulation. Since these peptides can then impinge on b-cells to enhance insulin secretion, FFA (NEFA) may exert both indirect (via incretin release) and direct (via
receptors on b-cells) stimulatory effects on the insulin release (cited from [53,66]).
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the ingestion of food (Fig. 1B). For example, an increase in the circu-
lating glucose levels provides a signal to the brain regarding acute
energy status. Glucose-responsive neurons in the hypothalamus
and brain stem are excited or inhibited when exposed to increment
of the blood glucose [37]; that is, the responsible neurons signal that
food has been ingested. The resultant neuronal output may modu-
late feeding behaviour, hepatic glucose production, and insulin
secretion. Forty years ago, Oomura et al. [60] first demonstrated that
NEFA activate lateral hypothalamic neurons in rats, which intrigu-
ingly suggested a role for NEFA as neuronal signaling molecules.
Nevertheless, less attention has been paid thereafter to the potential
role of NEFA in the hypothalamic regulation of energy balance.
Twenty-seven years later, however, Obici et al. [58] showed that a
6 h intra-cerebroventricular infusion of the oleic acid reduced food
intake as well as hepatic glucose production. Subsequently, Wang
et al. [88] confirmed that oleic acid regulates three distinct popula-
tions of neurons in the hypothalamic arcuate nucleus in a glucose-
dependent fashion. It became apparent that pharmacological
manipulation of hypothalamic fatty acid signaling alters the regula-
tion of glucose and energy homeostasis. Daily variations in the
plasma NEFA concentrations are currently known to be monitored
in the NEFA-sensitive hypothalamic neurons as a cellular messenger
informing energy status of the body. Subpopulations of neurons in
the ventromedial and arcuate hypothalamic nuclei are selectively
inhibited or activated by NEFA in order to control the insulin level
[51]. Such ‘brain-lipid sensing’ is involved in the control of feeding
behavior, hepatic glucose production, and insulin secretion
[58,59,16]. For achieving the ‘brain-lipid sensing’, it would be bio-
logically reasonable to share the same cell surface receptor
‘GPR40’ between the brain and pancreas (Fig. 1).

Since insulin acts in the hypothalamus to regulate body weight,
impairment of the insulin signalling leads to increased food intake
and body weight gain [76,35]. It is generally accepted that obesity
is associated with an increased risk of type 2 diabetes, because
adipose tissue releases increased amounts of NEFA which induce
insulin resistance (decreased insulin sensitivity) by impairing
peripheral glucose utilization and promoting hepatic glucose over-
production. More importantly, continuously elevated levels of
plasma NEFA play a key role in the pathogenesis of b-cell dysfunc-
tion [35]. Acute exposure to NEFA stimulates insulin secretion,
whereas chronic exposure impairs insulin secretion [78]. The role
of excessive fatty acids in the pathogenesis of insulin resistance
and type 2 diabetes has been widely accepted [11]. When b-cells
are healthy, the adaptive response to insulin resistance, i.e.
increased insulin release occurs and normal glucose tolerance is
maintained. On the contrary, when insulin resistance is accompa-
nied by dysfunction of b-cells, impaired insulin secretion results
in decreased insulin levels and signalling in the hypothalamus, that
lead to decreased inhibition of hepatic glucose production and
reduced efficiency of glucose uptake in muscle. Accordingly, b-cell
dysfunction is critical in defining the risk of impaired glucose tol-
erance and development of type 2 diabetes. Increased glucose lev-
els together with elevated NEFA levels can synergize to further
adversely affect b-cell health, often referred to as ‘glucolipotoxicity’
[35]. However, the exact mechanism of b-cell dysfunction due to
its degeneration and/or death is still incompletely elucidated. This
knowledge would contribute not only to exploring the molecular
and genetic basis of type 2 diabetes but also to developing new
approaches to its treatment and prevention.

The amount of insulin release varies according to the nature,
quantity and route of administration of the stimulus to b-cells,
and the prevailing glucose concentration. When considering an
intimate involvement of the hypothalamus in the regulation of
energy and glucose metabolism, it is reasonable to assume that
the brain has a crucial role in the functional adaptation to changes
in insulin sensitivity. Given the recently recognized role of fatty
acid metabolism in the brain’s control of energy homeostasis, it
would not be surprising if fatty acid receptor GPR40, which is
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expressed considerably in the hypothalamus [14,46], regulates
insulin sensitivity. Although GPR40 was most abundant in medulla
oblongata, substantia nigra and spinal cord within the brain [14], it
was concentrated at the supraoptic nucleus and paraventricular
nucleus in the monkey hypothalamus [46]. NEFA metabolism
and/or signaling within discrete hypothalamic regions can function
as a sensor for the nutrient availability. In this sense, physiological
role for GPR40 in the hypothalamus is presumably to provide acute
fine adjustments of insulin secretion to facilitate efficient storage
of NEFA [50]. Between the hypothalamus and the pancreas, there
is a GPR40-mediated interface that is capable of regulating energy
balance and glucose levels. The GPR40-positive neurons in the
hypothalamus can directly respond to circulating nutrients and
hormones such as NEFA, glucose and leptin to generate efferent
nerve activity that directly regulates hepatic glucose production,
pancreatic secretion of insulin and glucagon, as well as glucose
uptake of the skeletal muscle (Fig. 1B). Accordingly, dysfunction
of the NEFA-sensitive neurons may impair neural control of energy
and glucose homeostasis, and lead to the development of obesity
and type 2 diabetes in the predisposed subjects [21]. It is now
widely accepted that NEFA act centrally to modulate not only food
intake and body weight but also glucose homeostasis as well,
although the underlying mechanism still remains incompletely
elucidated. GPR40 can become an important factor to explain the
link between the brain and pancreas as well as obesity and type
2 diabetes.

3. GPR40 expression in the pancreas: beneficial and detrimental

Glucose homeostasis requires the highly-coordinated regula-
tion of insulin secretion by the pancreatic b-cells, which is pri-
Fig. 2. GPR40-mediated potentiation of glucose- and NEFA-stimulated insulin secretion
effect of saturated longer-chain (C > 14) FFA (NEFA) (B). (A) Acute stimulatory effect of a
phase followed by a slower but prolonged 2nd phase. The 1st phase occurs by the exocy
glucose uptake through the GLUT-2 transporter. This glucose-stimulated insulin secretion
(2) ATP production with a rise in ATP/ADP ratio, (3) closure of ATP-gated K+ channels (K
voltage-gated Ca2+ channels (VGCC), (6) influx of the extracellular Ca2+, and (7) exocytosi
repolarize cell membrane, close VGCC, and limit Ca2+ influx. GPR40 activation also le
enhanced membrane depolarisation and net Ca2+ influx via VGCC. The 2nd insulin se
unsaturated fatty acids with GPR40 which then couples to the G-protein Gaq. This le
phosphatidylinositol-4,5-bisphosphate (PIP2), and generation of inositol 1,4,5-trisphospha
insulin secretion, while IP3 binds with the IP3 receptor at the endoplasmic reticulum ca
3 days) effect of NEFA is the induction of lipotoxicity via an enhancement of peroxisomal
and palmitic acid (C16:0), are transported into the peroxisome via the ABC transporters (A
cell apoptosis. It is still a matter of debate whether GPR40 mediates the long-term de
detoxifying enzyme; oxidoreductase catalase, they are exceptionally vulnerable to H2

coenzyme A (CoA) (cited from [27]).
marily mediated by glucose itself and secondarily potentiated
by NEFA via GPR40 (Fig. 2A). Glucose-stimulated insulin secretion
occurs biphasically within hours, with a rapid but short 1st phase
followed by a slower but prolonged 2nd phase [49]. The extended
period of lower secretion during the 2nd phase mediated by NEFA
actually accounts for the majority of insulin secretion. The glu-
cose-stimulated, rapid but short insulin secretion (1st phase)
[49] occurs by the secretion of a readily-releasable pool of secre-
tory granules that were pre-docked at the plasma membrane.
Upon stimulation of GPR40, gating of voltage-gated K+ channels
is impaired, which serves to prolong glucose-induced insulin
secretion (Fig. 2A) by opening voltage-gated Ca2+ channels (VGCC)
and maintaining cytosolic Ca2+ at an elevated level [24]. In con-
trast, the NEFA-augmented, slower but prolonged insulin secre-
tion (2nd phase) [49] occurs by the mobilization of granules
from an intracellular pool to the plasma membrane via a process
that requires cytoskeletal reorganization (Fig. 3B). GPR40-medi-
ated, Gaq/11/phospholipase C (PLC)-dependent signaling mecha-
nism is responsible for the NEFA-mediated augmentation of the
2nd insulin secretion phase. Although somewhat weaker than
palmitic acid, oleic acid also shows the insulinotropic effect. To
explain the mechanism of oleate-mediated insulinotropic effect,
Ferdaoussi et al. [25] showed that oleate promotes phosphoryla-
tion of the DAG-sensitive, serine/threonine protein kinase D1
(PKD1) for the cortical actin depolymerization which is central
to the 2nd insulin secretion phase. DAG promotes phosphoryla-
tion of PKD1 which, in turn, activates currently undefined targets
implicated in the filamentous (F)-actin remodeling to potentiate
the 2nd insulin secretion phase (Fig. 3B). Since a single intracar-
otid injection of oleate can increase the frequency of neuronal fir-
ing rate in the arcuate nucleus of rats [51], it is tempting to
in pancreatic b-cells (A), and generation of H2O2 leading to the long-term lipotoxic
n increased blood glucose on the insulin secretion is biphasic; a rapid but short 1st
tosis of a readily-releasable pool of secretory granules in response to the enhanced

occurs as followings; (1) glycolysis of the glucose-6-phosphate produces pyruvate,
+-ATP), (4) depolarization of the plasma membrane, (5) the resultant opening of the
s of the ready-made insulin granules. Then, (8) opening of voltage-gated K+ channels
ads to inhibition of the opening of voltage-gated K+ channels thereby promoting
cretion phase occurs by the binding of long-chain saturated or mono- and poly-
ads to increased phospholipase C (PLC) activity, hydrolysis of plasma membrane
te (IP3) and diacylglycerol (DAG). DAG activates protein kinase C (PKC) to potentiate

using release of stored Ca2+ (cited from [53]). (B) The detrimental chronic (after 1–
metabolism. After saturated longer-chain (C > 14) NEFA such as stearic acid (C18:0)
BCD), the peroxisomal b-oxidation yields high levels of H2O2 ultimately leading to b
leterious effects of NEFA on b-cells. As b-cells almost completely lack the H2O2-

O2 which was generated in peroxisomes during metabolizing NEFA-derived acyl-



Fig. 3. GPR40-mediated signaling in response to oleate and conjugated linoleic acid (CLA). (A) Structures of linoleic acid and CLA. (B) The 2nd insulin secretion phase occurs
by the release of insulin granules that were newly recruited to the plasma membrane in response to the normal NEFA (for example, oleate) binding with GPR40. Insulin
granules from the intracellular pool is mobilized via a process that requires reorganization of F-actins. This NEFA-stimulated and GPR40-mediated insulin secretion occurs as
followings; (1) GDP-for-GTP exchange at Gaq/11 and the subsequent dissociation from the b/c subunit, (2) the resultant activation of PLC, (3) hydrolysis of PIP2 to produce two
second messengers; IP3 and DAG, (4) IP3 triggers Ca2+ efflux from ER, simultaneously (5) DAG activates PKD1 which induces F-actin remodeling to recruit insulin granules
(cited and adapted from [49]). The main signaling cascade involves activation of PKD1, remodeling of the cortical actin and potentiation of the 2nd phase of glucose-induced
insulin secretion. Accordingly, it is probable that overactivation of GPR40 in response to CLA may induce excessive Ca2+ mobilization and cause cell toxicity. For example,
long-term intake of cis-9, trans-11-CLA and trans-10, cis-12-CLA is associated with serious adverse effects such as impaired insulin sensitivity, and ultimately, type 2 diabetes.
In this sense, CLA is a highly-efficacious GPR40 agonist, compared to oleate.
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speculate that the 2nd insulin secretion phase might be con-
trolled by the hypothalamic neuronal output.

High intakes of hypercaloric diets have increased alarmingly
recently in Western countries. Chronic consumption of high-fat-
and-fructose diets is associated with the development of obesity
and insulin resistance. Generally, hypercaloric diet, especially rich
in trans/saturated fat and cholesterol, and fructose-sweetened bev-
erages seem to increase visceral adiposity and type 2 diabetes. The
toxic effects of NEFA upon insulin-producing cells are dependent
on chain length and degree of saturation [18]. Unsaturated NEFA,
irrespective of their chain length, are not toxic. In contrast, chron-
ically elevated concentrations of longer-chain (C > 14) saturated
NEFA, for example palmitic acid exhibit a strong cytotoxic effect
upon b cells, although NEFA with a shorter chain length (C13:0 tri-
decanoic acid or shorter) are well tolerated by insulin-producing
cells [27].

Peroxisomes are single membrane-bound, highly dynamic
organelles present in virtually every eukaryotic cell. Although sim-
ilar in overall mechanism, mitochondrial and peroxisomal b-oxida-
tion are different from each other in substrate specificity and
function [27,87]. The b-oxidation prefers saturated longer-chain
(C > 14) NEFA such as stearic acid (C18:0) and palmitic acid
(C16:0) as substrates which is in accordance with their toxicity
profile. Stearic acid is b-oxidized preferentially by peroxisomes,
while palmitic acid is handled by both peroxisomes and mitochon-
dria. In the first step of b-oxidation, the electrons are transferred to
FAD in the mitochondria, while O2 is the electron acceptor in the
peroxisomes, and this leads to the formation of hydrogen peroxide
(H2O2). Accordingly, peroxisomes are thought to be the major site
of H2O2 formation in insulin-producing cells, whereas mitochon-
dria are a site of minor contribution. The detrimental effect occurs
via an enhancement of peroxisomal metabolism of acyl-coenzyme
A (CoA), yielding high levels of H2O2 as a by-product of the
b-oxidation (Fig. 2B). Since the pancreatic b-cells almost completely
lack the H2O2-detoxifying enzyme, oxidoreductase catalase [43,81],
they are exceptionally vulnerable to H2O2 that was metabolically
generated in peroxisomes. If H2O2 is not quickly converted into
water and oxygen, it can react in an iron-catalysed reaction with
the superoxide radical (O2��) yielding the highly reactive hydroxyl
radical (OH�). This causes b-cell dysfunction and ultimately cell
death, because of its low antioxidative defense status [27].

Although b-cell lipotoxicity has been subject to intensive
research [97,65], intriguingly the molecular cascade has not been
elucidated in detail. In particular, implication of GPR40 for the
development of b-cell lipotoxicity in response to excessive NEFA
has been controversial. Concerning the role of GPR40 in lipotoxic-
ity, some proposed that, by mediating hypersecretion of insulin in
response to high-fat diets, GPR40 is indirectly responsible for
hyperinsulinemia-induced insulin resistance [78]. On the contrary,
others concluded that NEFA-induced hyperinsulinemia represents
a mechanism by which the b-cell attempts to compensate for insu-
lin resistance and that this ability is compromised by GPR40 dele-
tion [6,49]. Based on the latter concept, reduction in the GPR40
signaling might be mechanistically linked to the development of
type 2 diabetes, and chronic activation of GPR40 might produce
beneficial effects on glucose homeostasis. However, there is still
no consensus to conclude whether GPR40 agonists are beneficial
in preventing b-cell lipotoxicity. Since saturated and unsaturated
NEFA exert completely different effects on b-cell viability, binding
of saturated and unsaturated long-chain NEFA to GPR40 cannot
explain the different effects, because both are ligands for GPR40.
Furthermore, lipotoxicity is not always attributable to expression
of the GPR40 receptor, because b-cells are damaged even in
GPR40-knock-out mice which were fed a high-fat diet [27]. Taken
together, it is conceivable that GPR40 does not mediate lipotoxicity
to insulin-secreting cells in response to excess NEFA.
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Both x-3 and x-6 PUFA are essentially not toxic to b cells. In
particular, PUFA with a chain length of PC16 show a protective
effect against palmitic acid-induced toxicity, and the physiologi-
cally-important oleic acid attenuates the toxic effect of palmitic
acid [27]. However, linoleic acids after conjugation of their double
bonds can become extremely toxic, and GPR40 mediates lipotoxic-
ity in response to the conjugated linoleic acids (CLA). CLA refer to a
group of conjugated octadecadienoic acid isomers which are
derived from linoleic acids (Fig. 3A). Microbes in the gastrointesti-
nal tract of ruminant animals convert linoleic acids into different
isoforms of CLA through biohydrogenation. Commercial prepara-
tions of CLA are made from the linoleic acids of safflower or sun-
flower oils under alkaline conditions. Humans most often acquire
CLA not only through partially-hydrogenated vegetable oils such
as margarine and shortening but also through ruminant meat
(e.g. beef), milk and dairy foods. Furthermore, for the purpose of
reducing fat stores and increasing muscle mass, CLA have attracted
considerable attention as dietary weight loss supplements in Wes-
tern countries. Such CLA supplements have become a subject of
intense debate due to their potential influence on glucose homeo-
stasis and insulin sensitivity by interfering with peroxisome prolif-
erator-activated receptor-c (PPAR-c) and activating nuclear factor
jB (NFjB) and caspases [62,39]. However, the molecular mecha-
nisms underlying the effects of CLA on the glucose homeostasis
are not completely understood. Some workers suggest that CLA
may attenuate development of the impaired glucose tolerance
and hyperinsulinemia [69,55,52], whereas others suggest that
CLA intake is associated with serious adverse effects such as
impaired insulin sensitivity, insulin resistance and ultimately,
development of type 2 diabetes [64,3,39].

Increased insulin-releasing capacity of pancreatic islets from
CLA-fed mice is well-known [63,90]. Intriguingly, it was recently
demonstrated in both in vitro and in vivo experiments that the
two representative CLA isomers ‘cis-9, trans-11-CLA’ and ‘trans-
10, cis-12-CLA’ (Fig. 3A), being contained in foods and commercial
supplements, markedly increase glucose-stimulated insulin secre-
tion by targeting and activating GPR40. Each CLA isomer markedly
increased glucose-stimulated insulin secretion both in insulin-
producing, immortalized rat INS-1E cells that endogenously
express GPR40 and in primary pancreatic b-cells of wild type
but not GPR40-null mice [75]. In addition, Hsu and his colleagues
demonstrated that ‘trans-10, cis-12-CLA’, but not ‘cis-9, trans-11-
CLA’, induced apoptosis of TM4t mouse mammary tumor cells
by lipid peroxidation and GPCR-dependent activation of the
AMP-activated protein kinase pathway [61,29,30]. At present,
the molecular mechanisms underlying the effects of CLA on glu-
cose homeostasis are not completely understood and the clinical
side-effects of the CLA-mediated GPR40 activation are not
accepted worldwide. However, long-term ingestion of CLA poten-
tially causes b-cell dysfunction in humans. One should keep in
mind the possible risk that GPR40 is responsible not only for the
acute, physiological insulinotropic effects in response to various
NEFA (Fig. 2A) but also for the development of insulin resistance
and type 2 diabetes after long-term ingestion of highly-efficacious
GPR40 agonist; CLA (Fig. 3B).
4. GPR40 expression in the brain: beneficial and detrimental

In the wild-type (GPR40-negative) PC12 cells which can differ-
entiate into neuron-like cells with nerve growth factor (NGF),
10 lM AA failed to induce intracellular Ca2+ mobilization, although
a positive control KCl induced it. In contrast, GPR40 gene-transfec-
ted PC12 cells showed a transient (�1.5 s) but remarkable Ca2+

mobilization in response to the same concentration of AA, which
was not inhibited by a Ca2+ chelator EDTA [93] (Fig. 4A). This indi-
cates that the Ca2+ mobilization occurred not by the influx of the
extracellular Ca2+, but by the release from the internal stores as
shown in Fig. 3B. Furthermore, in cultured rat neural stem cells
transfected with GPR40 gene, DHA induced Ca2+ mobilization via
the PLC/IP3 pathway [48]. In addition, Vettor et al. [86] identified
a loss-of-function mutation of the GPR40 gene in human subjects
and HeLa cells, that weakens Ca2+ mobilization in response to NEFA
and prevents the b-cell’s ability to adequately sense lipids as an
insulin secretory stimulus. These data suggest that GPR40 can bind
with NEFA to induce Ca2+ mobilization in neurons.

Expression of GPR40 has been detected in various areas of the
human [14] and monkey [46,47,12,13] central nervous system
(CNS). In humans, GPR40 mRNA was expressed in the wide variety
of brain areas, being most abundant in the medulla oblongata and
substantia nigra. Hippocampus and hypothalamus also showed a
substantial GPR40 expression [14]. In the monkey brain, GPR40
immunoreactivity was confirmed in the wide variety of neurons
including the cerebral cortex, hippocampus, amygdala, hypothala-
mus, cerebellum, spinal cord, etc. [46]. In addition, GPR40 expres-
sion was significantly upregulated in the subgranular zone (SGZ) of
ischemia-enhanced hippocampal neurogenesis in adult monkeys.
GPR40 immunoreactivity was localized at the neural progenitors,
immature neurons, astrocytes and endothelial cells of the SGZ of
dentate gyrus [47]. A specific newborn marker, polysialylated neu-
ral cell adhesion molecule (PSA-NCAM) and GPR40 double-positive
neurons showed a significant increase in the 2nd week after tran-
sient whole brain ischemia (Fig. 4B). Furthermore, GPR40/phos-
phorylated cAMP response element-binding protein (pCREB)
double-positive progenitor cells significantly increased in the SGZ
on day 15 after ischemia [12,13]. Expression patterns of GPR40
and pCREB were completely identical, and they were coexpressed
in both the mature and newborn neurons as well as in the astro-
cytes residing in the SGZ. It is suggested from these data that PUFA,
GPR40, and pCREB may be engaged in the same GPR40 signaling
pathway (Fig. 5A) to promote adult neurogenesis in the primate
hippocampus [95]. As the expression of GPR40 gene in the rodent
brain was initially reported to be negligible compared to humans
[31,14,32], analyses focusing the rodent brain have been unfortu-
nately hampered for the past decade. However, recent reports
demonstrated ubiquitous expression of GPR40 in the mouse brain
[56,96]. Zamarbide et al. [96] confirmed GPR40 mRNA expression
by PCR and in situ hybridization, while Nakamoto et al. [56] con-
firmed GPR40 protein by Western blotting and immunohistochem-
istry. These reports have paved the way to consider the mouse as a
suitable model to study expression and function of GPR40 in the
brain.

Despite expression of GPR40 in the mature neurons and adult-
born neurons of ischemic monkeys [46,47], it remains to be eluci-
dated whether expression of GPR40 in the hippocampal neuro-
genic niche is of any importance for learning and memory.
Notably, it still remains unknown whether PUFA-GPR40 signaling
is crucial for the synaptogenesis, long-term potentiation and syn-
aptic plasticity. All NEFA receptors such as GPR40, GPR41 (predom-
inantly expressed in immune cells), and GPR43 (predominantly
expressed in adipocytes) are known to regulate various physiolog-
ical homeostasis and are linked to activation of extracellular sig-
nal-regulated kinases (ERK)1/2. Activation of the mitogen-
activated protein kinase (MAPK)/ERK pathway is known to be
required for the memory acquisition, consolidation and reconsoli-
dation from newborns to adults [7,10,77,74,80,38,19,17,42].
Intriguingly, in the primary cultured mice neurons the selective
GPR40 agonist GW9508 increased phosphorylation of CREB, Akt
and ERK1/2, and this was blocked by GPR40 antagonist GW1100.
Furthermore, a direct GPR40-CREB link was demonstrated by using
human GPR40-positive neuroblastoma cells that have been exten-
sively used to investigate CREB activation [96]. Taken together, it is
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Fig. 4. Effects of GPR40 shown by in vitro (A) and in vivo (B) experiments. (A) In response to 10 lM arachidonic acids (AA), Ca2+ mobilization does not occur in the wild-type
PC12 (rat adrenal pheochromocytoma) cells (WT-PC12: open arrow), although KCL induced it. However, Ca2+ mobilization occurred in the GPR40 gene-transfected PC12 cells
(GPR40/PC12) regardless of Ca2+ in the medium. (B) Newborn neurons double-positive for GPR40 and PSA-NCAM, bIII-tubulin or doublecortin (DCX) are observed in the
subgranular zone of the postischemic monkey hippocampus (A, B, C in white). PSA-NCAM/GPR40 double-positive neurons show a significant increase on days 9 and 15 after
cerebral ischemia (D1–D4). Accordingly, it is likely that GPR40 is closely related to the adult hippocampal neurogenesis.
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probable that this membranous receptor can conduct extracellular
x-3 PUFA signals to the nucleus for phosphorylating CREB [13,95]
and the GPR40-mediated MAPK/ERK cascade conceivably plays a
crucial role in triggering gene transcription for brain-derived neu-
rotrophic factor (BDNF) synthesis that underlies synaptogenesis
and synaptic plasticity (Fig. 5B).

Lipids are essential components of a living organism, but in
excess or after oxidation, they may show toxicity and cause neuro-
logical deficits. For example, high-saturated fat diets impair adult
hippocampal neurogenesis in male rats [44]. High-fat diets impair
also hippocampal synaptic plasticity and spatial learning ability in
middle-aged rats, although involvement of GPR40 has not been
indicated [79]. Hypertriglyceridemia observed in the obese mice
was shown to mediate cognitive impairment, possibly by disturb-
ing maintenance of the N-methyl-D-aspartate component of hippo-
campal long-term synaptic potential [22]. These experimental data
are consistent with the previous clinical and epidemiological data
that excessive energy intake adversely affects the brain, presum-
ably through the increased oxidative damage. Furthermore, adipo-
kines (adipocytokines) such as leptin (Fig. 1B) and adiponectin,
being released from the adipose tissue due to obesity by the excess
calorie intake, affect brain nuclei important for cognition and
energy metabolism. Luchsinger et al. [45] reported that individuals
with higher intakes of calories and fats may be associated with a
higher risk of Alzheimer’s disease when they carry the apolipopro-
tein Ee4 allele.

Long-term activation of GPR40 by continuous intake of oxidized
x-6 fatty acids may overstimulate physiological mechanisms,
causing excito-toxicity. A characteristic structural feature of AA is
a 20-carbon chain containing four cis-double bonds that form a
molecule of 5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid. Enzymatic pro-
cesses convert AA to biologically active lipids such as prostaglan-
dins and leukotrienes, known collectively as eicosanoids. In
addition, reactive oxygen radicals oxidize AA to generate a com-
plex mixture of oxidized lipids termed isoeicosanoids that share
structural similarity to eicosanoids. Reaction of AA with the nitro-
gen dioxide radical (�NO2) generates four trans isomers of AA (TAA)
via reversible addition of the NO2 radical to the cis double bonds
(Fig. 7A) [9]. TAA is a mixture of AA isomers having one trans-dou-
ble bond and three cis-double bonds, comprising of 5E-AA, 8E-AA,
11E-AA and 14E-AA [34]. Two of them (5E-AA and 8E-AA) are not
found in diets, being endogenously produced [8]. As experimental
feeding and clinical studies have supported the concerns that die-
tary TAA are cardiovascular risk factors, clinical consequences of
the endogenous formation of TAA are nowadays thought to be
more serious, because many chemical and/or physical stresses
would cause cellular AA to isomerize. For example, humans are
exposed to various endogenous and exogenous sources of nitrogen



Fig. 5. Schematic view of PUFA-GPR40-pCREB signaling pathway (A) and its virtual effect upon synaptic plasticity in the transgenic fat-1 mice rich in endogenous x-3 PUFA
(B). (A) Initially, PUFA bind to GPR40 and trigger an intracellular cascade that results in Ca2+ efflux from the ER. Increased Ca2+ presumably activates ERK1/2, etc. which
phosphorylates CREB, a key transcription factor in the gene regulation, for example, of BDNF transcription. Since GPR40 is not coupled to the cAMP-PKA pathway, CREB
phosphorylation may occur protein-kinase C (PKC) activation and increase of increasing intracellular Ca2+ levels. (B) The final product ‘BDNF’ from the ‘DHA-GPR40-pCREB
signaling pathway’ contributes to an increase of synaptic spines in the hippocampus in response to upregulated DHA in the transgenic fat-1 mice.

Fig. 6. The trans isomers of arachidonic acid (TAA) as new mediators of nitro-oxidative stress causing microvascular degeneration or relaxation. TAA induce selective
microvascular endothelial cell apoptosis through upregulation of thrombospondin-1 (TSP-1) and its binding to the CD36 receptor by activating of ERK1/2 and caspases. In
addition, via activation of GPR40 receptor TAA can induce microvascular degeneration and affect glucose homeostasis. In contrast, activation of HO-1/2 via Ca2+-activated K+

(BKCa) channels can cause microvascular relaxation. Endogenous TAA can originate not only from dietary sources but also from the pathobiochemistry of a disease process
(cited from [9]).
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dioxide radical (�NO2). Polluted urban air contains significant
amounts of �NO2, and it is formed in exposure to cigarette smoke,
hyperoxia, hypercapnia, air pollution, etc. (Fig. 6). Furthermore,
immune responses to invading microorganisms in inflammation
stimulate inducible nitric oxide synthase (iNOS) in macrophages
that form nitric oxide �NO, which is oxidized to �NO2. TAA, gener-
ated by NO2-mediated isomerization of the AA double bonds,
may have profound influence on cellular properties by causing
changes of the membrane asymmetry and fluidity [34,9].

Biological effects of TAA especially upon microvessels are
diverse (Fig. 6) [9]. Both opening of the Ca2+-activated K+ (BKCa)
channels and activation of heme oxygenases (HO-1/2) by TAA leads



Fig. 7. Formation of TAA (A) and their effects upon endothelial cells of the retina (B) and the brain (C). (A) NO2 can bind to a cis double bond of AA and induce cis–trans
isomerization by a reversible addition reaction. (B and C) TAA being generated during the nitrative stress induce microvascular degeneration in the rat retina (B) (cited from
[40]) and the mice brain (C) (cited from [28]). The role of GPR40 in TAA-induced stroke is obvious, because the lesion is remarkably decreased in the GPR40 knocked-out (KO)
mice (C).
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to microvascular relaxation via formation of carbon monoxide (CO)
and increase of cGMP levels. On the contrary, TAA induce concen-
tration- and time-dependent apoptotic cell death of microvascular
endothelial cells. TAA stimulate formation of the anti-angiogenic
factor thrombospondin-1 (TSP-1) and its binding to the CD36
receptor, which leads to apoptotic cell death of microvascular
endothelial cells via transient activation of MEKK-ERK1/2 pathway
and caspases. One must note that ERK1/2 can have diametrically
different effects on cell survival (Fig. 5) and death (Fig. 6), depend-
ing on the kinetics and amplitude of its activation and the cellular
environment [40]. More importantly, TAA bind also to GPR40
receptor (Fig. 6) and play a significant role as a cause of neonatal
retinal microvascular degeneration and ischemia-induced micro-
vascular endothelial cell death and cerebral infarct of rodents
through GPR40 activation (Fig. 7B and C) [28]. Since these occurred
in the wild-type mice but not in the GPR40 knocked-out mice, role
of GPR40 in endothelial cell death is clear at least in the non-pri-
mate animals. Although the implications of these observations in
humans have yet to be confirmed, it is probable that TAA, originat-
ing not only from dietary sources but also from the diet-indepen-
dent pathobiochemistry of a disease process, can function as a
modulator of the PUFA-mediated activation of GPR40 in various
pathologies such as retinopathy, infarct, dementia, etc. [9].
Fig. 8. Beneficial as well as detrimental roles of GPR40 signaling in response to the
normal fatty acids or CLA/TAA. Non-esterified fatty acids (NEFA), at the physiolog-
ical concentration, contribute to appropriate brain and pancreas functions, whereas
CLA and TAA cause cell degeneration and related diseases.
5. Summary

The available data from research into GPR40 during the past
decade support the following five notions.

(1) GPR40 is responsible for both potentiating glucose-stimu-
lated insulin secretion and mediating the stimulatory effects
of long-chain saturated or mono- and poly-unsaturated fatty
acids on insulin secretion in pancreatic b-cells.
(2) Abundant expression of GPR40 in the pancreas and hypo-
thalamus may act to facilitate ‘brain-lipid sensing’. The
hypothalamus presumably plays an important part in
orchestrating appropriate energy metabolism via neuronal
GPR40. A better understanding of ‘brain-lipid sensing’ could
provide clues for developing new therapeutic strategy for
type 2 diabetes and obesity.

(3) By activating ERK1/2 and CREB, GPR40 in the hippocampus
may be related to adult neurogenesis and the concomitant
synaptic plasticity.

(4) Long-standing, abnormal activation of GPR40 receptors by
CLA or TAA possibly causes lipotoxicity of b-cells, brain
endothelial cells, or neurons.
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(5) Accordingly, it may be advantageous to focus on GPR40 as a
cause and/or therapeutic target of type 2 diabetes, retinopa-
thy, stroke, etc. in humans.

Whether or how GPR40 expression in some areas of the CNS
could have functional consequences remains incompletely under-
stood. Further research using diverse experimental paradigms will
be needed to elucidate pharmacological, biological, and therapeu-
tic roles of GPR40. However, the dual (beneficial as well as detri-
mental) roles of GPR40 must be taken into account for
considering divergent results in response to un-oxidized fatty acids
or those after oxidization or conjugation (Fig. 8).
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